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The acoustic receptivity due ' to localized surface suction in a two-dimensional 
boundary layer is studied using a finite-Reynolds-number theory and direct numerical 
simulation of the Navier-Stokes equations. Detailed comparisons between the two 
methods are used to determine the bounds for application of the theory. Results show 
a 4 YO difference between the methods for receptivity in the neighbourhood of branch 
I with low suction levels, low acoustic levels, and a moderate frequency; we attribute 
this difference to non-parallel effects, not included in the theory. The difference is larger 
for receptivity upstream of branch I, and smaller for receptivity downstream of branch 
I. As the peak suction level is increased to 1 % of the free-stream velocity, the 
simulations show a nonlinear deviation from the theory. Suction levels as small as 
0.1 YO are shown to have a significant effect on the instability growth between branch 
I and branch 11. Increasing the acoustic amplitude to 1 YO of the steady free-stream 
velocity produces no significant nonlinear effect. 

I 

1. Introduction 
The transition to turbulence in boundary layers can be linked to the nonlinear 

development of unsteady velocity fluctuations. These velocity disturbances can result 
from free-stream perturbations, from surface variations (in geometry or transpiration 
velocity), or from a combination of the two. The character of the transition process 
depends on the structure and magnitude of the initial disturbance field; for example, 
small initial amplitudes may lead to the excitation of linear instability modes, whereas 
large initial amplitudes can directly trigger transition, bypassing the linear instabilities. 
For small to moderate disturbance amplitudes, the growth of the disturbance is 
described by stability theory. However, the stability analysis does not account for the 
initial excitation of the disturbance modes. The initial conditions for the stability 
analysis are derived from receptivity theory. When the disturbance modes are 
travelling waves (e.g. Tollmien-Schlichting (TS) waves or unsteady cross-flow vortices), 
the receptivity often involves the interaction of free-stream disturbances with steady 
disturbances resulting from the surface variation. The disturbance interactions can lead 
to both localized and non-localized excitation of the boundary-layer instabilities. Here, 
we focus on localized receptivity. 

The earliest theoretical studies of localized receptivity are based on asymptotic 
methods (Goldstein 1985 ; Ruban 1985). These studies demonstrate the mechanism by 
which an acoustic disturbance can excite an instability wave through localized 
scattering. A local variation in surface geometry produces a steady velocity 
perturbation within the boundary layer. This steady disturbance is characterized by a 
broad spectrum of Fourier modes. The acoustic wave modulates this steady field to 
produce a spectrum of travelling waves. Downstream of the surface variation, the 
travelling-wave field is dominated by the most unstable eigenmode. A local variation 
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in surface transpiration can also provide the scattering necessary for receptivity 
(Heinrich, Choudhari & Kerschen 1988). The reviews of Goldstein & Hultgren (1989) 
and Kerschen (1 989) provide additional discussion about the different localized- 
receptivity mechanisms which have been considered. 

In the asymptotic analysis, the surface variation is taken to be upstream of or near 
the lower branch of neutral stability (branch I), and the scaling of the Reynolds 
number and frequency is coupled by the variation along the neutral curve. An 
expansion in inverse powers of the Reynolds number then leads to the nonlinear triple- 
deck equations governing the disturbance (Goldstein 1985). For small amplitudes of 
the surface perturbation, the triple-deck equations can be linearized - thus permitting 
a closed-form solution for the receptivity amplitude. This linearization is equivalent to 
applying the locally parallel basic-flow assumption. When the surface perturbation is 
‘large’, the triple-deck equations can be solved numerically (Bodonyi et al. 1989; 
Bodonyi & Duck 1992). This provides a solution which is nonlinear (in terms of the 
surface-perturbation amplitude) and non-parallel (within the context of the triple-deck 
equations). However, the solution is linear in terms of the free-stream-disturbance 
amplitude and is also based on the large-Reynolds-number limit with the requirement 
that the boundary layer does not undergo massive separation. 

Localized receptivity has also been studied using formulations based on the 
Orr-Sommerfeld equation (Zhigulev & Fedorov 1987; Crouch 1992; Choudhari & 
Streett 1992; Hill 1993). These formulations provide results which are based on finite 
Reynolds numbers and are valid both near and away from the lower branch of neutral 
stability (branch I). These approaches do not link the frequency and Reynolds number 
through their relative scaling, thus enabling a study of frequency effects at finite 
Reynolds numbers. The basic flow is assumed to be locally parallel and both the free- 
stream and surface-variation amplitudes are assumed to be small. The surface variation 
produces a locally ‘ non-parallel’ contribution to the mean flow. The finite-Reynolds- 
number results for surface roughness are in very good agreement with experiments of 
Saric, Hoos & Radeztsky (1991) and simulations of Spalart (1993). At large Reynolds 
numbers (low frequencies), the results approach the values calculated from the linear 
asymptotic theory (Crouch 1992). 

In this study, we consider localized acoustic receptivity due to surface suction 
using the finite-Reynolds-number theory and direct numerical simulations of the 
Navier-Stokes equations. The results are directly relevant to laminar-flow-control 
applications and indirectly relevant to other surface variations such as roughness. The 
effects of non-parallelism and nonlinearity are investigated by comparing results from 
the two methods. This study provides guidelines on the range of validity of the theory. 
It also provides a check on the algebra and programming errors for both methods. 

2. Formulation 
The flow is governed by the two-dimensional incompressible Navier-Stokes 

equations. We consider a flat-plate boundary layer with velocities (u, u )  corresponding 
to the streamwise x and surface-normal y directions, respectively. All quantities are 
non-dimensionalized using the free-stream velocity Urn and the reference length 8, = 
( ~ x * / U , ) l / ~ .  This introduces the Reynolds number R = U, SJv. 

The surface transpiration is represented by the boundary condition 

u = O ,  v = k ~ , H ( x )  at y = O ,  

H ( x )  = e-(z-z,)*/o* 
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where x, is the streamwise location of the centre of the Gaussian distribution and u(x, 
y = 0 )  < 0 for suction. In the incompressible limit, an acoustic free-stream disturbance 
leads to the boundary condition 

The small parameters B ,  and E ,  correspond to the transpiration level and the acoustic 
amplitude, respectively. 

2.1. Perturbation theory 
In the perturbation theory, we consider E,, eS < 1 and expand the velocity in the form 

u+l+~,e- ' "~  as y+m. (3) 

4x9 Y ,  t )  = ~ O ( Y )  + t f a ( ~ ,  t )  + € 8  V ~ ( X ,  Y )  + "a € 8  Vas(X, Y ,  t )  + O ( 4 )  + 0(~,2). (4) 

The first term in the expansion is the Blasius profile under the assumption of quasi- 
parallel flow. The quasi-parallel-flow approximation locally neglects the weak x- 
variation of the boundary layer leading to the non-homogeneous Orr-Sommerfeld 
equation for each of the disturbance velocities. At O(s,), the unsteady flow is decoupled 
from the surface transpiration. This component of velocity represents the Stokes flow 
induced by the acoustic wave of frequency w.  The surface transpiration produces a 
steady disturbance field at O(E,). The interaction of the steady and unsteady 
disturbances at O(s,s,) then produces an unsteady disturbance with length and time 
scales that may match those of the natural boundary-layer instabilities. Although the 
O(E, E,)  solution is generated through a nonlinear interaction, this component is linear 
with respect to both E ,  and 6,. The O ( E ~ )  and O(c> disturbances are not included since 
they do not contribute to the receptivity at this order; this can be verified by harmonic 
balance. 

The surface transpiration velocity H(x) ,  the steady field vs(x, y), and the resulting 
unsteady field u,,(x,y, t )  are represented by Fourier transforms in the streamwise 
direction. In evaluating the inverse Fourier transform, the TS component of u,, is given 
by the residue associated with a pole singularity at a = aTs (where aTS is the 
streamwise wavenumber for the least-stable eigenmode). The disturbance amplitude, 
defined as the maximum of the u,,-velocity component, is given by 

= €s KH(aT,!3)l* ( 5 )  
The function Kis the response residue for the conditions (w,  aTs, R,) and fi(aTs) is the 
Fourier transform of H(x)  evaluated at the eigenmode wavenumber. Additional details 
about the perturbation theory are given by Crouch (1992) in the context of localized- 
roughness receptivity. Choudhari & Streett (1992) provide a similar presentation of the 
theory, including results for localized suction. The receptivity amplitude A, provides 
the disturbance level at the receptivity source x,, or R,. To enable a comparison of the 
relative strength of the receptivity occurring at different streamwise locations, we also 
define an effective branch-I amplitude A, given by 

where R, is the branch-I Reynolds number. This is the branch-I disturbance amplitude 
which would produce a response equivalent to A, downstream. 

2.2. Numerical simulation approach 
The numerical approach was used earlier by Spalart (1993), but few details were given. 
Using a closely related method Bertolotti, Herbert & Spalart (1992) presented results 
for the evolution of TS waves in Blasius flow, demonstrating full non-parallel and 
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nonlinear capabilities. The simulations are ‘ spatial’ even though a Fourier method is 
used in x (Spalart, Moser & Rogers 1991); this is a result of applying a ‘fringe method’. 
The very close agreement between the PSE and the DNS reported in that paper led to 
a high degree of confidence in both approaches. The variant of the fringe method used 
here is different from that of Bertolotti et al., primarily because a laminar velocity field 
(V, in their notation) is not available due to the suction and the acoustic forcing. The 
variant used here is very close to that described by Spalart & Watmuff (1993, hereafter 
referred to as SW), although they treated turbulent flow. As their discussion was 
extensive, here we only discuss differences with that work. 

The first extension is that the V, velocity field now includes suction at the wall, as 
well as the acoustic fluctuation in the free stream (i.e. the non-homogeneous boundary 
conditions). This field is also time-dependent, which introduces the term -aQ/at in 
the right-hand side of the momentum equation, SW equation (9). The sum of a 
decaying exponential in y and the Stokes-wave solution is a convenient choice to 
introduce the free-stream boundary condition (3). For the suction boundary condition 
(l), (2) it is more convenient to work in Fourier space in x. Divergence-free velocity 
fields that are non-zero at the wall and decay in the free stream are constructed from 
the Laplace solution exp(-ky), where k is the wavenumber, and other exponential 
factors much like in SW equation (7). These are adjusted to be infinitesimal outside the 
expected boundary layer, so as not to introduce vorticity there. A simplification, 
compared with SW, is that no pressure gradient is applied. As a result, only the k = 0 
form of SW equation (7) is needed, and the V, correction (SW, $3.3) is unnecessary. 
The S’ term of SW equation (9) is also absent. 

The other difference, relative to SW, is in the use of the V, term. In SW the S 
parameter in the fringe term V, was adjusted to effect a moderate reduction in the 
boundary-layer thickness, by a factor of about 2, without suppressing the turbulence; 
note that a mature turbulent inflow state was desired. Here, in contrast, it takes larger 
values and is adjusted to produce a thickness reduction by a factor of about 10 - with 
two results. The first is that the boundary layer, being very thin at the inflow, rapidly 
evolves into a Blasius profile. This is confirmed by the shape factor, which reaches 2.58 
upstream of the suction slot, and the product C,R,, which reaches 0.441. The virtual 
origin of that Blasius flow can then be accurately determined so as to correctly locate 
the suction slot. If we add this adjustment region to the fringe region proper (in which 
extra terms are active, see SW) we find that the useful region represents about 80% 
of the period in x. The second result of the larger S values is that the TS waves 
are suppressed in the fringe region, both by the low thickness Reynolds number 
(R8. < 300) and by the compression imposed by V,. The suppression is not complete, 
but the residual amplitude can be made small enough compared with the receptivity 
amplitude - if needed by widening the fringe. 

Grid-refinement results are discussed by Spalart (1993). We use the same resolution 
in y. For the x-direction, we verify that the H-function in (2) is resolved with very little 
ringing; we also find that the spurious amplitude upstream of the suction slot is about 
two orders of magnitude lower than the receptivity amplitude. This spurious amplitude 
reflects perturbations not fully suppressed by the fringe terms, as well as truncation 
errors propagated by the spectral method. All the amplitudes quoted are the peak 
r.m.s. value of the streamwise velocity fluctuation, versus y ,  at a given x-location. 

The calculation of a receptivity amplitude requires a ‘reference simulation’ which 
includes acoustic forcing, but no suction. By subtracting the reference solution from 
the full solution and extracting the time-dependent content of that difference we isolate 
the interaction component, O(E, eS), from the steady suction component, O(E,), and the 
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acoustic component, O(e,). The acoustic component depends on the inflow conditions, 
and in any case is not identical to the Stokes wave, because we are using moderate 
frequencies and Reynolds numbers. Thus it is essential to isolate it, especially for small 
values of 6,. 

The receptivity amplitude is determined by measuring the O(s, 6,) disturbance 
magnitude at some downstream reference location R,, (branch I1 for the linear stability 
problem). The amplitudes A ,  and A ,  are then calculated from the downstream 
amplitude using 

A ,  = A(R,,) e-Ns(Ro) (7)  
A I - - A(R I I  ) e-Ns(RI), (8)  

where A(R,,) is the amplitude at R,, and N,(R) is the N-factor between R and RI, based 
on the maximum of the u-profile. The function N,(R) = In [A(R,,)/A(R)] is calculated 
from a separate numerical simulation of a small-amplitude wave introduced upstream 
of R in the presence of suction. This function is the non-parallel equivalent of the 
integrated growth rate from quasi-parallel theory (including the suction effects on the 
instability growth). For the frequency and suction lacations considered, the excited 
disturbance is very close to a pure TS wave when it reaches branch 11. As a result, the 
choice of the downstream reference location has very little influence on the calculated 
receptivity amplitudes. 

3. Results 
In the presentation of results we focus on the receptivity amplitude since this is the 

most important information provided by the theory. The receptivity amplitude can be 
used in conjunction with stability theory to make estimates on the transition location 
for flows of practical interest. The results are all for the frequency I; = 106w/R = 56. 
The value of cr is chosen to maximize I?(aTs) at R,  z 575; this gives cr = 14.2, in terms 
of the local branch-I scaling. The dimensional value of cr, 8160v/U,, is held constant 
for all cases considered. 

We first consider the influence of the suction location R,  on the receptivity 
amplitude. Figure 1 shows the variation of the receptivity amplitude at the suction 
location A ,  as a function of R,. The suction level and the acoustic amplitude for the 
simulation results are sS = respectively. These values ensure that 
the results are linear. The receptivity level shows a strong increase as the suction is 
moved upstream. The theory is in good agreement with the simulation results for 
Reynolds numbers R 3 R,. At branch I, the difference between the two methods is 
approximately 4 YO. The lower prediction of the theory becomes more significant 
upstream of branch I. The difference between the results at R = 400 is 6.5-1 1.2 YO. 
There is an uncertainty associated with the simulation value N ,  at R = 400 due to local 
transients (Bertolotti et al. 1992); the two points shown in figure 1 provide a band 
around the actual value. The principal differences between the theory and simulation 
can be attributed to non-parallel effects, not accounted for in the theory. The 
perturbation expansion provides a consistent approximation for small levels of 6, and 
6,. However, the growth of the boundary layer is neglected. The comparison between 
the simulation and theory shows that neglecting the weak boundary-layer growth is an 
acceptable approximation. Significant deviations are limited to the region upstream of 
branch I. 

In order to better illustrate the impact these disturbances can have on transition, we 
recast the receptivity amplitudes in terms of effective branch-I amplitudes. Figure 2 

and 6, = 
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RO 
FIGURE 1.  Receptivity amplitude at the suction location, A,/eaeq, as a function of 4. 

Solid line - perturbation theory, symbols - numerical simulation. 

FIGURE 2. Effective receptivity amplitude at branch I, A1/eO es, as a function of 4. 
Solid line ~ perturbation theory, symbols - numerical simulation. 

shows the variation of A, with R,. Now that the disturbance growth is accounted for, 
the strongest receptivity occurs for suction locations near branch I. The maximum level 
of A, is just upstream of R,; this has also been shown for receptivity to cross-flow 
vortices (Crouch 1993; Herbert & Lin 1993). The agreement between the theory and 
the simulation is unchanged for R z R,. Upstream of branch I, the agreement is 
substantially better. This results from a cancellation between the non-parallel effects on 
the receptivity and the non-parallel effects on the linear growth. The degree of 
cancellation may not be the same for other frequencies. The quasi-parallel 
approximation provides accurate results for the linear receptivity amplitudes near 
branch I (the region of highest potential impact for transition). 
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FIGURE 3. Variation of the receptivity amplitude Ao/e, with the magnitude of the transpiration 
velocity e8 for the condition & = 575 z R,. Solid line - perturbation theory, symbols - numerical 
simulation A(R,,) e-NJRo) for suction (0) and blowing (*). 

We now consider the effects of increasing the magnitude of the surface transpiration 
velocity. Figure 3 shows the variation of A, with e,, for both suction v(x,y  = 0) < 0 and 
blowing v(x, y = 0)  > 0. The suction strip is located near branch I, R, % R,, where the 
receptivity has the greatest impact (i.e. A, x A,). The maximum suction level 
considered is E ,  = 0.03; in the asymptotic scaling of Heinrich et al. (1988) and Bodonyi 
& Duck (1992), the value of e8 = 0.03 corresponds to a suction velocity of V,  = 
- R3I4 E ,  x - 3.5. For small transpiration velocities, e, < 0.1 %, the simulation results 
are approximately the same for suction and blowing. The theory is in good agreement 
with the simulations for this range of 8,. There is no distinction between suction and 
blowing in the perturbation results at O(eae8). The simulation results show a near- 
linear dependence on E ,  for values up to 1 %. Larger values of e, result in significant 
nonlinear effects on the receptivity. In terms of the asymptotic scaling, E ,  = 1 YO 
corresponds to an order-one suction velocity (Heinrich et al. 1988). Thus the 
asymptotic theory would predict significant nonlinear effects at this suction level. The 
virtual origin of the Blasius flow that is re-established downstream of the slot is shifted 
by about 50 units in R for E ,  = 1 YO. This amount of suction is well beyond the levels 
used for typical laminar-flow-control applications. However, similar nonlinear effects 
will occur for large-amplitude surface bumps which are encountered in practical 
applications (Saric ef al. 1991 ; Bodonyi et al. 1989). The difference between the suction 
and blowing results at e, = 0.3 YO would be removed if the source location, R,, used in 
(7) was shifted toward the downstream edge of the suction slot. This suggest that the 
effective origin for the receptivity is just downstream of the centre of the suction 
distribution. The large-suction nonlinear effect on the receptivity decreases the initial 
amplitude well below the linear value. The difference between the theory and the 
nonlinear simulation at e8 = 3 YO is approximately 57 YO of the theoretical value. 

Potential nonlinear effects due to large acoustic amplitudes have also been 
investigated. Numerical simulations were conducted with ea = at the 
conditions 6, = R, = 575. For the experimental conditions of Saric et al. (1991), 
these amplitudes would correspond to sound levels of 104 and 124 dB, respectively. 

and 
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FIGURE 4. Variation of the amplitude-growth ratio A(R,,)/A(R,) with the magnitude of the 
transpiration velocity E, for the condition R, = 575 = R,. Results for suction (0) and blowing (*). 

These larger values of s, had no effect on the receptivity amplitudes. The relative 
insensitivity to the magnitude of s4 can be explained by a simple order-of-magnitude 
analysis. Since the sound field is gwen by a discrete frequency, the first modification 
(due to large s,) of the O(s, 6,) receptivity occurs at O(e; ss). Thus for an amplitude of 
s, = the next term in the expansion is 0(10-4) smaller. Even if the coefficient of 
the O(si ss) term were large, its contribution is likely to be small if E ,  < 1 %. 

Finally, we consider the total effects of the suction, or blowing, on the amplitude 
measured downstream, A(&,). The downstream amplitude is typically used to infer the 
receptivity amplitude in experiments - see, for example, Saric et al. (1991). The value 
of A(R,,) includes the combined effects of receptivity and modifications to the linear 
growth. Figure 4 shows the variation of the growth ratio A(R,,)/A(R,) as a function 
of ss for suction and blowing. For ss < 0.01 YO, the local surface transpiration has a 
negligible effect on the instability growth. The growth is significantly modified for 
s, 2 0.1 YO. The total disturbance, measured downstream, is the product of the 
receptivity amplitude A ,  and the growth ratio A(R,,)/A(R,). Therefore, the total 
amplitude A(R,,)/sa varies linearly with E, for es < 0.1 YO. For E, 2 0.1 YO, A(RII) /e ,  
shows a nonlinear variation due to modifications to the instability growth. The effect 
of nonlinearity in the receptivity does not affect A(R,,) until es reaches a level of 1 YO. 
A similar behaviour can be expected for large surface bumps. As the bump height is 
increased, the initial effect will be to enhance the disturbance growth; this will be 
followed by a modification of the receptivity amplitude if the bump height becomes 
sufficiently large. 

4. Conclusions 
This study shows good agreement between the Om-Sommerfeld-based receptivity 

theory and numerical simulations at a moderate frequency of F = 56 in Blasius flow. 
Non-parallel effects, which are neglected in the theory, change the receptivity 
amplitude by less than 4 YO for receptivity in the neighbourhood of branch I. Upstream 
of branch I, the effects become more significant; however, these disturbances have less 
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potential for impacting transition. Nonlinear effects due to large suction levels lead to 
decreased receptivity for E, > 1 YO. Significant modifications to the linear growth occur 
at c8 z 0.1 YO - below the value of c8 for nonlinear receptivity. These modifications 
produce a nonlinear variation in the total amplitude measured downstream. Large 
acoustic amplitudes ea, for a single-frequency disturbance, have a negligible effect on 
the receptivity level. The receptivity theory provides an accurate basis for developing 
an amplitude-based method for transition prediction. 

Mainframe computer time provided by NAS. 
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